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1. Introduction

Fermions coupled to inhomogeneous background bosonic fields can become localised, in

the sense that the fermion spectrum contains localised bound states [1 – 4]. In particular

in the presence of scalar kinks, fermions prefer “living on” the kinks rather than populate

higher energy (delocalised) radiation modes. This phenomenon is ubiquitous in condensed

matter systems with impurities and where external magnetic (gauge) fields provide the

inhomogeneities. The case of scalar fields acquires particular interest, if one allows kinks

to represent higher dimensional domain walls or branes in string theory [5]. The localisation

of fermions on inhomogeneities then becomes reminiscent of brane world scenarios, where

the Standard Model fields are expected to “live” on one particular three dimensional brane.

In the presence of extra dimensions, additional branes may exist (in the “bulk”), each

with their localised fermion states. As such branes collide, one may envisage fermions

being transfered from one brane to another. Such a scenario was studied in [6], building

on earlier work in [7] where the authors considered the behaviour of scalar modes bound
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to the walls. One should also consider the effects of self gravity in such scenarios [8] given

that, depending on the model, one may generate curvature singularities in the collision [9].

Another picture of braneworlds emerges from the work of Horava and Witten [10],

where it was realized that spacetime boundaries can play an important role. In that par-

ticular case it was discovered that each of the two boundaries supported an E8 gauge theory.

This braneworld model then places our Universe at the boundary of some larger spacetime.

The question of what happens as bulk branes collide with our boundary-Universe is what

this paper addresses, as well as extending the calculation of Gibbons et al [6]. In such a

setup a baryogenesis scenario is possible where fermions carried by branes are scattered off

“our” braneworld. If the interactions are not CP conserving, it is possible that particles

and anti-particles are less likely to be transfered to the braneworld. We can consider the

present work as a step towards modelling this.

In order to model a 3+1 Universe as a boundary of a 4+1 spacetime we could start

with an action of Dirac fermions, and scalar fields that support domain walls to model the

branes. However, if we employ a planar symmetry along the walls this model reduces to a

1+1 model with a boundary. And for our particular initial conditions (domain walls with

just a bound zero mode) the equations for the Dirac fermion reduce to the equations for

a Majorana fermion. So, while we in practise simulate a Majorana fermion in 1+1, this

can be lifted to a 4+1 spacetime with Dirac fermions, a scalar field for the branes, and a

boundary.

We study the fermion transfer numerically, treating the scalar as classical and the

fermions in terms of a set of quantum modes.

2. Scalar-fermion model in 1+1 dimensions

We consider a model of a real scalar φ and a single fermion species ψ in 1+1 dimensional

space-time. In our simulations we shall be considering situations both with and without a

boundary, in either case the bulk action we use is

Sbulk = −
∫

dt dz

[

1

2
∂µφ∂µφ − iψ̄γµ∂µψ +

λ

4

(

φ2 − 1
)2 − igφψ̄ψ

]

, (2.1)

with the bosonic boundary action being

Sboundary = ∓
∫

dt

[

√

λ

2

(

1

3
φ3 − φ

)

]

z=0

, (2.2)

Our choice of conventions is

ηµν = diag(−1, 1), {γµ, γν} = 2ηµν , ψ̄ = ψ†γ0. (2.3)

At this point, the couplings λ and g are free and we have chosen the boundary to lie at

z = 0. The boundary action for the scalar may seem unnatural at first but, as we shall see,

such a term means that there is no force between the boundary and a (static) kink, (or

antikink if the + sign is chosen). We also note that such a term would be required if we
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were interested in imposing supersymmetry (g2 = 2λ with Majorana fermions), however,

we shall not be restricting ourselves to this case. The corresponding equations of motion

in the bulk are

(γµ∂µ + gφ(z, t)) ψ(z, t) = 0, (2.4)
[

∂µ∂µ − λ
(

φ2(z, t) − 1
)]

φ(z, t) = −igψ̄ψ(z, t), (2.5)

By choosing a real representation of γµ,

γ0 =

(

0 1

−1 0

)

, γz =

(

0 1

1 0

)

. (2.6)

the equation of motion for the complex two-component fermion splits up into two uncoupled

real (Majorana) copies,

ψ = ψM
1 + iψM

2 . (2.7)

The equations of motion for ψM
1 and ψM

2 are identical, and we will from now on think in

terms of a single, two-component Majorana fermion ψM
1 , ignore the superscript, and write

it as

ψM
1 (z, t) =

(

ψ1(z, t) + ψ2(z, t)

ψ1(z, t) − ψ2(z, t)

)

. (2.8)

The equations of motion then read 1

ψ̇1(z, t) = −∂zψ2(z, t) + gφψ2(z, t), (2.9)

ψ̇2(z, t) = −∂zψ1(z, t) − gφψ1(z, t), (2.10)

φ̈(z, t) = ∂2
zφ(z, t) − λ

(

φ2(z, t) − 1
)

φ(z, t) (2.11)

We discretise these in a straightforward way and solve them numerically using a standard

Runge-Kutta algorithm, 4th. order accurate in time with 2nd order spatial derivatives.

The boundary condition was satisfied using a Newton-Raphson iteration [11].

The boundary conditions coming from the action are

∂zφ|0 = ∓
√

λ

2

(

φ2 − 1
)

|0, (2.12)

and for the fermions we will be using

ψ1|0 = ∓ψ1|0, ψ2|0 = ±ψ2|0, (2.13)

which can be derived from a boundary action of ± i
2

∫

dt[ψ̄ψ]z=0. We shall call these the

∓ Boundary Conditions, ∓BC. We see therefore that at the boundary either ψ1 or ψ2

vanishes, depending on the choice of sign of boundary conditions, with the −BC giving

1These equations are equivalent to those of the 4+1 system in [6] if we take ψ1 = iψ+ and ψ2 = ψ−.

This explains why the authors see an additional phase of π/2 between ψ+ and ψ−.
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ψ1|0 = 0 and the +BC giving ψ2|0 = 0. As we shall see later, these boundary conditions

allow for a normalizable fermion condensate on the boundary to co-exist with a kink or

antikink.

The scalar field equation can be thought of as concerning a classical field, but as

fermions are quantum, the right hand side source term in (2.5) should be replaced by

−ig〈ψ̄ψ〉. The resulting equations amount to a quantum fermion in a classical scalar

background.

For the purpose of this paper, we will make the approximation of neglecting the fermion

back-reaction on the scalar. The upshot of this approximation is that whereas the solution

of the mode equations (see below) are independent of the initial state (i.e. particle content)

of those modes, the back-reaction term 〈ψ̄ψ〉 is a quantum average over some density

matrix. In the present context, we are more interested in the behaviour of the fermion

modes as the scalar background changes than the exact details of the kink evolution. It

is however clear that with many fermions present, in particular when including all the

non-localised modes, the back-reaction may be sizeable, and may even drive the system to

a high-temperature thermal state. Then the setup of a solitary kink or kink-antikink pair

may no longer be realistic.

In our simulations we monitor the conservation of energy and we give here the expres-

sion of the energy in the scalar field,

H =

∫

dx

[

1

2
(φ̇)2 +

1

2
(φ′)2 +

1

2

(

dW

dφ

)2
]

± W (z = 0). (2.14)

Where W is integrand of (2.2). In particular we see that the boundaries have an energy

associated with them. In the case where the scalar field is in the vacuum at the boundary

we see that the boundary has an associated energy of

Eb(φ = 1) = ∓2

3

√

λ/2, Eb(φ = −1) = ±2

3

√

λ/2. (2.15)

This boundary energy will be important in understanding the dynamics of kink-boundary

collisions.

2.1 Kinks and boundaries

The static scalar equation of motion has a kink and an antikink solution φK and φA,

φK(z) = tanh

(

z − z0

D

)

, φA(z) = − tanh

(

z − z0

D

)

, D =

√

2

λ
, (2.16)

where z0 is the center of the (anti-)kink. We will use λ = 2, D = 1 throughout 2. Note

that these static solutions obey

∂zφ = ∓
√

λ

2

(

φ2 − 1
)

, (2.17)

2This amounts to using dimensionless quantities given by rescalings in the original action (2.1) of φ → ηφ

and x →
√

2

η
√

λ
x, g → g

p

2/λ. Because we are neglecting the back-reaction of the fermions, this is sufficient.

Had we not done so, we would need to rescale the fermion field ψ as well, and we would get into conflict with

the normalisation of that field. As ψ is quantum, its normalisation is fixed by the commutation relations

and hence it cannot be rescaled.
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so that there is no force between a kink and a −BC. Similarly there is no force between

an antikink and the +BC. In the case where the coupling constants take the supersym-

metric values, g2 = 2λ, the (anti)kink and the (+BC)−BC break the same half of the

supersymmetry.

When colliding kink with antikink we shall employ periodic boundary conditions.

When colliding single kinks onto a boundary, these are placed at z = 0, with the kink

coming in from the left (z < 0). Note that there is no loss of generality by choosing to send

in kinks but not antikinks, while using both boundary conditions. The system of kink and

−BC is equivalent to antikink and +BC, while kink and +BC is equivalent to antikink

and −BC; this covers all the possibilities.

3. Bound states

3.1 Static kinks

An interesting facet of topological defects such as kinks is that they often allow for bound

states in the particle spectrum. In the case at hand there are bound states for both the

scalar and fermi fields. Indeed, the existence of the scalar bound state was the motivation

behind the work of Rubakov and Shaposhnikov [12], asking whether we live on a domain

wall. To study the scalar spectrum we consider perturbing the scalar equation of motion

in (2.5) around a kink

φ(z, t) = φkink(z) + δφ(z, t), (3.1)

then by writing

δφ = exp(iωt)F (z), (3.2)

we solve the resulting eigenvalue equation to find the frequencies of the bound states [13, 12].

Taking the change of variables [6]

Z = tanh(z/D), (3.3)

we arrive at an associated Legendre equation with l = 2,

(1 − Z2)
d2F

dZ2
− 2Z

dF

dZ
+ 2(2 + 1)F − (4 − ω2D2)

1 − Z2
F = 0, (3.4)

for which there are three solutions, P 2
2(Z), P 1

2(Z), P 0
2(Z), corresponding to m2 = 4 −

ω2D2 = 2, 1, 0. These give frequencies ω = 0,
√

3/D, 2/D. The first of these modes,

the zero mode, corresponds to the translation of the kink, the second is a true bound state

while the third is not normalizable and so is not considered to be in the physical spectrum.

We also note that this last solution is right on the boundary of the continuum states, which

have mass
√

2λ = 2/D.

As well as these scalar bound states there are fermion modes localized to the kink

which we now describe. First there is the zero-mode [1]

ψK
1 (z, 0) =

√

Γ[gD + 1/2]

2D
√

πΓ[gD]

1

cosh[(z − z0)/D]gD
, ψK

2 (z, 0) = 0, (3.5)
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where we have normalized too unity according to the inner product

(ψ,χ) =

∫

dxψ†χ. (3.6)

Now recall that the scalar field of the kink can happily co-exist with the -BC, and that

these boundary conditions required the vanishing of ψ2(z = 0). So we see that the -BC

also have no effect on the fermion fields of the static kink.

In addition to the zero mode we also find that there is an excited fermion mode given

by

ψKE
1 (z, t) = −NωD

sinh
(

z−z0

D

)

[

cosh
(

z−z0

D

)]gD
cos(ωt − ϕ), (3.7)

ψKE
2 (z, t) = N 1

[

cosh
(

z−z0

D

)]gD−1
sin(ωt − ϕ), (3.8)

with

ω2 =
2gD − 1

D2
, N 2 =

(gD − 1) Γ[gD + 1/2]

(2gD − 1) D
√

πΓ[gD]
. (3.9)

Recall that this model, with a Majorana fermion, is supersymmetric when g =
√

2λ = 2/D.

In this case we see that the frequency of the excited fermion mode matches that of the scalar

bound state, ω =
√

3/D, as is expected for supersymmetry. We also expect, given that

there are no more scalar bound states, that there will be no more fermion excited states.

We note that this does not hold true as we change couplings away from the supersymmetric

case.3

3.2 Moving kinks

As we are interested in kinks colliding with each other and against boundaries we need to

know what kinks and bound states look like when they are moving, that is, we need to

boost the kink.

The scalar field of a kink (antikink) moving at speed v simply involves a Lorenz con-

traction by γ = 1/
√

1 − v2,

φK/A
v (z, 0) = ± tanh

[

γ

(

z − z0

D

)]

. (3.10)

An isolated, moving kink or antikink has an energy of

Eantikink = Ekink =
4

3

√

λ/2γ. (3.11)

We note that the energy of a static kink, v = 0 coincides with the difference in energy

between a − and a + boundary, ∆Eb = 4
3

√

λ/2, from eq. (2.15).

3We would like to thank Kei-ichi Maeda for informing us of his calculation showing that there is a tower

of bound states with frequency ω2 = n 2gD−n

D2
, for integer n subject to 0 ≤ n < gD.
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Figure 1: The incoming kink profiles before, during and after a kink-antikink collision. The curves

are equally spaced in time, with dashed lines before the collision and full lines after.

The fermion modes also transform in the usual way, and in terms of the 1, 2 components

we have

ψ1(z, t) → ψ′
1,v(z, t) =

√

γ + 1

2

(

ψ1 [γ(z − vt)] +
vγ

γ + 1
ψ2 [γ(z − vt)]

)

, (3.12)

ψ2(z, t) → ψ′
2,v(z, t) =

√

γ + 1

2

(

ψ2 [γ(z − vt)] +
vγ

γ + 1
ψ1 [γ(z − vt)]

)

. (3.13)

3.3 Boundaries

Just as kinks support bound states, so does a boundary. To describe these we consider the

scalar field to be in one of its vacuum states at the boundary, φ(z = 0) = ±1, then we see

from the spinor equations of (2.9) that the boundary carries a single localized, normalisable

fermion

∂zψ1(z) = −gφ(z)ψ1(z), ∂zψ2(z) = gφ(z)ψ2(z). (3.14)

For φ(z = 0) = +1 the normalisable solution is given by

ψB
1 (z) = 0, ψB

2 (z) =
√

g exp (gz) . (3.15)

For φ(z = 0) = −1 we instead have

ψB
1 (z) =

√
g exp (gz) , ψB

2 (z) = 0. (3.16)

Note that the condition of normalisability imposes that one fermion component is zero in

each case. For example, if we have a single kink in the bulk (which allows a condensate of

ψ1) then at the boundary we will have φ ≃ +1 which allows a boundary condensate of ψ2,

consistent with the -BC.

4. Kink dynamics

Before discussing the behaviour of fermions on kinks we first want to describe how kinks in-

teract with antikinks, and also how they interact with the ±BC boundaries. The dynamics

– 7 –
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Figure 2: The incoming kink profiles before and after the collision with a −BC boundary (left).

The curves are equally spaced in time, dashed before the collision, full after. The kink enters the

boundary and comes back out unscathed. In contrast, the +BC boundary (right) decays straight

away and emits an antikink which prevents the incoming kink from reaching the boundary.

of kink-antikink collisions have been studied by a number of authors [14 – 17, 7] revealing

the rich structure of behaviour at small impact speeds, v. At large speeds, v >∼ 0.2, the

kinks simply collide a single time and bounce away to infinity. As we go to smaller speeds

then the kinks may have multiple collisions before travelling off to infinity, or they may

simply annihilate. While extending the analysis of [6] for the fermions involved in such col-

lisions we shall concentrate on the simplest range of speeds where there is a single collision,

figure 1.

In order to capture the dynamics of brane-boundary collisions, Antunes et al [11]

modelled the system with a scalar field and, in our language, collided kinks against ±BC-

like boundaries. They discovered that the kink is temporarily absorbed into the boundary,

but re-emerges having lost a (model-independent) fraction of its kinetic energy of ∼ 63%.

The boundary conditions used were in fact slightly different from ours, in that they made

the replacement

W ′(φ) = ±
√

λ

2
(φ2 − 1) → |

√

λ

2
(φ2 − 1)|, (4.1)

hence having −BC between the two potential minima and +BC outside. This fix is

responsible for the reported energy loss at collision.

In our simulations we shall be re-visiting this scenario, but using strict ±BC bound-

aries. Then energy is conserved at collision, taking into account changes in boundary

energy. For −BC, the kink reemerging from the boundary has equal and opposite velocity

to the incoming one, figure 2 (left). In the case of +BC the vev φ(z = 0) = 1 at the bound-

ary is unstable to decay via the emission of an antikink, figure 2 (right). This because the

energy difference between +1 and −1 on the boundary is exactly the energy of an antikink.

In the absence of an incoming kink (or with a kink very far away), the boundary could

remain in the unstable vacuum, but as the kink approaches, the exponential tail hits the

wall and causes the vacuum to decay. In practice, this means that before the kink reaches

– 8 –
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the boundary, an antikink will be emitted and collide with the incoming kink. Hence we

cannot realise a kink/+BC collision.

5. Particle number and Bogoliubov coefficients

5.1 Kink-antikink modes

The general philosophy to calculating particle numbers is to identify the correct vacuum

and creation/annihilation operators. For example, when colliding a kink and antikink we

consider the system in the asymptotic past to be in a vacuum state and we can therefore

expand the fermi wave operator as

Ψ = aKψK
in + aKEψKE

in + aAψA
in + aAEψAE

in + continuum. (5.1)

Where the a are the particle operators for: the fermi zero mode on the kink (K); fermi zero

mode on the antikink (A); first excited fermi mode on the kink (KE); first excited fermi

mode on the antikink (AE). And the ψin are the (normalized) mode functions found in

section 3 corresponding to kinks and antikinks with the requisite position and velocity. If

there is more than one excited fermion mode then they may also be included in an obvious

way. To an observer in the asymptotic future there will be a similar expansion, only now

they will use a different set of particle operators,

Ψ = bKψK
out + bKEψKE

out + bAψA
out + bAEψAE

out + continuum. (5.2)

Again, the mode functions ψout are the mode functions corresponding to the kink, antikink

with the appropriate position and velocity of the outgoing defects.

¿From the original action we see that the momentum conjugate to the wave operator

Ψ is iΨ† so by using the standard equal-time anti-commutation relation

{Ψα(t, x),Ψ†
β(t, y)} = δα,βδ(x − y), (5.3)

we see that the particle operators obey

{a, a†} = {b, b†} = 1, (5.4)

with other anti-commutators vanishing.

Now that we have our wave operator in the asymptotic limits, we need to relate the

particle operators in order to understand how particle numbers are affected. To do this we

introduce the Bogoliubov coefficients in the standard way, which relate the mode functions

ψin to ψout in the asymptotic future. In the following expressions the mode functions ψin

are the time-evolved mode functions from (5.1) evaluated in the asymptotic future,

ψK
in = αKψK

out + βKψKE
out + γKψA

out + δKψAE
out + continuum, (5.5)

ψKE
in = αKEψK

out + βKEψKE
out + γKEψA

out + δKEψAE
out + continuum,

ψA
in = αAψK

out + βAψKE
out + γAψA

out + δAψAE
out + continuum,

ψAE
in = αAEψK

out + βAEψKE
out + γAEψA

out + δAEψAE
out + continuum,

– 9 –
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The αi, βi, γi, δi are the Bogoliubov coefficients, which can be extracted by taking the

inner products according to (3.6)

αK = (ψK
in , ψK

out), βK = (ψK
in , ψKE

out ), (5.6)

γK = (ψK
in , ψA

out), δK = (ψK
in , ψAE

out ), (5.7)

and similarly for ψKE, ψA, ψAE, ψB . In this way we are able to calculate all of the

Bogoliubov coefficients for a given simulation.

The number operator takes the standard form,

N̂ =
1

2

∫

dx(Ψ†Ψ − ΨΨ†), (5.8)

which we may write, using (5.1), (5.2), (5.4), in terms of the particle operators

N̂ = n̂K + n̂KE + n̂A + n̂AE, (5.9)

n̂K = OK†OK − 1

2
, n̂A = OA†OA − 1

2
, (5.10)

n̂KE = OKE†OKE − 1

2
, n̂AE = OAE†OAE − 1

2
, (5.11)

where O represents either the a or b particle operator depending on whether we are looking

at the past or future respectively. We define the vacuum relative to the initial state as

∀ i, j, ai|0〉 = 0, (5.12)

and the particle states as

|K000〉 = aK†|0〉, |0A00〉 = aA†|0〉, |00KE0〉 = aKE†|0〉, |000AE〉 = aAE†|0〉. (5.13)

We can see from this that, as described in [1], the vacuum states have fermion number −1
2

whilst the excited states have fermion number +1
2 .

We are now in a position to express the asymptotic-future particle operators, b, in terms

of the asymptotic past particle operators, a, by comparing (5.1) and (5.2) and using (5.5),

bK = αKaK + αKEaKE + αAaA + αAEaAE , (5.14)

bKE = βKaK + βKEaKE + βAaA + βAEaAE , (5.15)

bA = γKaK + γKEaKE + γAaA + γAEaAE, (5.16)

bAE = δKaK + δKEaKE + δAaA + δAEaAE . (5.17)

For simplicity, we will focus our interest on evaluating the expectation values in the

state corresponding to a kink with a zero mode fermion colliding with a vacuum antikink.

nK = 〈K000|bK†bK |K000〉 − 1/2, (5.18)

and similarly for nKE, nA, nAE, nB. These then represent the fermion occupation num-

bers in the respective modes after the collisions, assuming that the initial state has only
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excitations (particles) in the kink fermion groundstate. This state is annihilated by all the

aKE/A/AE, leaving us to calculate only

nK + 1/2 =
(

nK
0 + 1/2

)

|αK |2, (5.19)

nKE + 1/2 =
(

nK
0 + 1/2

)

|βK |2, (5.20)

nA + 1/2 =
(

nK
0 + 1/2

)

|γK |2, (5.21)

nAE + 1/2 =
(

nK
0 + 1/2

)

|δK |2, (5.22)

where we have generalised to an initial state with fermions only in the K mode, but with

an arbitrary particle number nK
0 . We will not be concerned with the normalisation of the

state, but simply compute the Bogoliubov coefficients αK , βK , γK , δK . Below we will

suppress the label K.

5.2 Kink-boundary modes

For the collision of a kink on a −BC, we now expand the wave operator as

Ψ = aKψK
in + aKEψKE

in + aBψB
in + continuum. (5.23)

and

Ψ = bKψK
out + bKEψKE

out + bBψB
out + continuum, (5.24)

where the index B refers to the boundary zero mode. The expansion of the mode functions

proceeds as before, with the addition of a boundary mode function,

ψK
in = αKψK

out + βKψKE
out + ξKψB

out + continuum, (5.25)

ψB
in = αBψK

out + βBψKE
out + ξBψB

out + continuum, (5.26)

and if we send in a kink with non-vanishing occupation number n0
K for the zero-mode

fermion, then we find that the boundary number operator in the asymptotic future is

nB + 1/2 =
(

nK
0 + 1/2

)

|ξK |2. (5.27)

6. Kink-antikink collisions

The first set of results that we shall present is an extension of the study in [6], where the

Bogoliubov coefficients of the fermion zero mode were calculated for kink/antikink colli-

sions. Here we also present data for the excited fermion bound state, as well as observing

the dependence on collision speed.

The collisions were performed by initially placing a kink and a antikink a distance 30Dv

(c = 1) apart. We then boosted them with velocity v and −v respectively, as described

above. Figure 3 (left) shows the profile of the scalar field and fermion modes before and

after the collision, for the case of v = 0.6, g = 2. Both before and after the collision, the

fermion modes are well localised around the kink and antikink.
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Figure 3: Left: The scalar field (black) and the fermion K mode components ψ1 (red) and ψ2

(blue) before (dashed) and after (full) the collision. The initial velocity was v = 0.6, and the

coupling g = 2. Right: The overlap of the incoming K mode after the collision with the outgoing

kink K and antikink A modes (α and γ), and the KE and AK modes (β and δ).
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Figure 4: Left: The velocity and coupling dependence of the Bogoliubov coefficients of the incom-

ing K mode with the outgoing K mode. Right: The same for the overlap on the A mode. Errorbars

reflecting the residual oscillation (see text) are roughly the size of the symbols.

We then calculate the Bogoliubov coefficients in time, figure 3 (right). Before the

collision at t/D ≃ 15 the fermion mode is the kink K mode, and so |α|2 = 1. during the

collision all bets are off; in particular we are not able to assign velocities to individual

kinks. Already at time t/D = 20, the kink-antikink pair have disentangled themselves,

and a final Bogoliubov coefficient had been established. Although there is some residual

oscillation even at late times, we assign final values at t/D = 50.

It is worth noting, that because the phase ϕ in eqs. (3.7), (3.8) is undetermined, we

instead keep the whole time-dependence ωt + ϕ fixed when computing the overlap. This

means that the computed β and δ are oscillating functions in time, figure 3 (right), and

we should use the amplitude of this oscillation as the Bogoliubov coefficient. Taking this

into account, the Bogoliubov coefficients can be read off with an accuracy of in most cases

better than 0.01. figure 4 shows the g and v dependence of α2 and γ2, the overlap with
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Figure 5: Left: The velocity and coupling dependence of the Bogoliubov coefficients of the K mode

with the outgoing kink KE mode. Right: The same for the overlap on the antikink AE mode.
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Figure 6: The sum of Bogoliubov overlaps on all the bound states |α|2 + |β|2 + |γ|2 + |δ|2. The

deviation from 1 is the amount of fermion number carried away as radiation.

the outgoing K and A modes.

As noted in [6], the coupling dependence approximately follows a a+b sin(cg+d) form,

although the amplitude decreases somewhat with g, especially for α. We will not attempt to

fit this behaviour numerically, but simply note some qualitative points of interest. α2 and

γ2 are anti-correlated with the same period in g, and the bulk of the fermion number ends

up in these lowest energy modes after the collision. However, as v is increased, fermion

number is lost from these modes, in particular from α2. For small g, the Bogoliubov

coefficients take a very long time to settle and seem to decrease continuously until they

do so. Figure 5 shows the corresponding overlap with the KE and AE modes, β2 and

δ2. These are strongly correlated with each other and seem to have the same period in

g as K/A mode coefficients, but with a phase shift of π/2. The fermion number taken

away in these modes is much smaller, but it is interesting that up to 10 to 20 percent

can end up here. There is a mild increase with v consistent with the decrease in α2 and

γ2. Any missing fermion number must then be transfered to modes which we do not take

into account, radiation or additional time-dependent bound states. We quantify this by
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Figure 7: Left: The scalar field (black) and the fermion K mode components ψ1 (red) and ψ2

(blue) before (dashed) and after (full) the collision. The initial velocity was v = 0.6, and the

coupling g = 2. Note the non-zero boundary mode contribution to the far right. Right: The

overlap of the K mode after the collision with the outgoing kink K and KE modes (α and β) and

the boundary mode B (ξ).

calculating the sum of the coefficients |α|2 + |β|2 + |γ|2 + |δ|2, shown in figure 6. The loss to

radiation has some non-trivial dependence on g, and increases with v, presumable because

there is then energy available to excite higher energy modes. It is striking that up to 60

percent of the fermion number can be lost to radiation in this way.

7. Kink-boundary collision

The second set of results in this paper are those associated with a brane colliding into a

boundary, rather than another brane. as such, we now collide a single kink onto −BC

boundary and see to what extent a fermion originally localised on the kink will stick to the

boundary. figure 7 (left) shows the field profiles initially and at late times after the collision.

Again, the fermions remain nicely localised around the kink, but after the collision also at

the boundary.

We shall again consider only the case where the kink starts with a fermion zero mode,

and calculate the Bogoliubov coefficient for finding a fermion in the outgoing K (|α|2), the

outgoing KE (|β|2) and the boundary B (|ξ|2) modes. Figure 7 (right) show the coefficients

in time, again with α2 = 1 until the collision at t/D ≃ 15. After another transient collision

stage, the coefficients take on definite values, and we end the simulation at t/D = 50.

The results concerning fermions radiating into the bulk are somewhat different to the

kink/antikink collisions. As shown in figure 9 we see that the sum representing bound

state fermions, |α|2 + |β|2 + |ξ|2, is very close to unity. This implies that very little of the

fermions end up in the bulk, with larger collision speeds producing more bulk fermions as

one would expect. We again determine the dependence on g and v, shown in figure 8. In

this case α2 is almost exactly anti-correlated with ξ2. Most fermion number is transfered

to the boundary for small and large values of g, with the maxima moving down and up
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Figure 8: The Bogoliubov coefficients of the incoming K mode unto the outgoing K mode, |α|2,
(left) and B mode, |ξ|2, (right).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

α2 +β
2 +ξ

2 v = 0.4
v = 0.5
v = 0.6
v = 0.7
v = 0.8
v = 0.9

Figure 9: The sum, |α|2 + |β|2 + |ξ|2, representing the fraction of fermions that end up in bound

states.

, respectively as v is increased. For v = 0.9, the kink retains its fermion, at least in the

range of couplings used here.

In order to understand the kink/antikink results we repeat the approximation devel-

oped in [6]. The approximation is a way of solving (2.5), (2.10) which writes the fermi field

during the collisions as

ψ(1,2) ≃ A(1,2)f(z), (7.1)

where f(z) is some even, normalized function, and the total amplitude is normalized by

A2
(1) + A2

(2) = 1. We then find that (2.5), (2.10) may be integrated along the z axis to give

A2
(1,2) ≃

1

2
(1 + sin(2gφc∆t)) . (7.2)

In this expression we have a representative value for φ during the collision, φc, and a collision

timescale ∆t. In this way Gibbons et al were able to explain the sinusoidal behaviour of

the Bogoliubov coefficients when a kink collides with an antikink. Unfortunately, the case

of a kink colliding with a boundary does not succumb to the same analysis, largely because
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the fermion mode functions have rather different z-dependence owing to one of them being

forced to vanish at the boundary. However, from the form of the Bogoliubov coefficients it

is tempting to speculate that a relation similar to (7.2) holds. A possible explanation for the

longer “wavelengths” in figure 8 could then be that during the kink/boundary collision the

value of φ changes very little from its vacuum value, while in the kink/antikink collisions

one finds that φ overshoots the vacuum by some amount depending on collision speed.

8. Conclusion

In summary, we have performed a detailed numerical study of fermion transfer in kink-

antikink and kink-boundary collisions.

In kink-antikink collisions, we confirm the findings of Gibbons et al [6] that although

the scalar field kinks bounce off each other in an elastic way, fermions initially in the K

mode on the kink will be distributed on the K, A, and radiation modes. As an extension

of their work we also included the first fermion excited modes, KE, AE, finding that these

modes also gets excited, and presented data for a wide range of collision speeds. The

distribution is very sensitive to the value of the coupling g, and hence the mass of the

fermions gφ. For small incident velocities v, most of the fermion number ends up in the

K and A modes, and these are anti-correlated in g. As the velocity is increased, more

and more fermion number is transfered from the K/A modes to the KE and AE, but also

delocalised radiation modes, and up to 60 percent can be “lost” to the bulk.

When colliding kinks on a -BC boundary, we found again that the kink is reflected

elastically, but that a significant amount of fermion number can stick on the boundary. In

this case, the K and B modes are anticorrelated in g, but in contrast to the kink-antikink

collisions, very little fermion number is transfered to the KE mode or radiation. For the

values of g employed here, low v favours transfer to the boundary, whereas for high v the

fermions stay on the kink and are carried away from the boundary again.

We in fact also solved for the evolution of the initial B, A, KE, and AE modes, and

unsurprisingly found that fermions initially in these modes are also distributed on all modes

after collision. In particular, a fermion localised on the boundary can be carried away by

a kink bouncing on this boundary. For brevity and to focus on our main aim, we did not

carry out a detailed exposition of all mode combinations. It is however straightforward to

do so.

We found that the numerical implementation of the ±BC boundary conditions require

some care, and that discretisation errors can be significant. We dealt with this by using

iterative methods, higher order derivatives and rather fine lattices, dr/D = 0.0025.

One could consider including more and more fermion modes in the spectrum, in order

to track the “lost” fermions. In the end, this would lead to a full quantum (Hartree)

treatment [18], and one would be able to include the back-reaction on the scalar self-

consistently. For the purpose of this paper, we found the K, A, KE, AK and B modes to

be sufficient.

We started by arguing that our 1+1 model could be lifted to give results for a 4+1

spacetime. While this is true, we have ignored any effects that depend on the directions
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within the brane. In particular we have not presented any results about the k dependence

of the Bogoliubov coefficients (where k refers to the wave-number in the brane world-

volume.) While our kinks do not annihilate it is interesting to note that a calculation

of the particle spectrum coming the tachyon condensation of brane-antibrane annihilation

has been performed [19], along with the consequences for reheating. We hope to present

results on the braneworld fermion spectrum due to a collision in a future publication.

As mentioned, another natural extension of this work is to consider more than one

species of fermions and/or more scalars to include effects like C and CP violation in the

scalar-fermion interaction. Then fermions of different chirality would no longer have the

same affinity to stick on the braneworld.

In a broader sense, simulations of fermions on domain walls could also be relevant to

electroweak baryogenesis, where at a first order phase transition, a domain wall sweeps

through a plasma, reflecting fermions off it in a CP-violating way.

Acknowledgments

We thank Kei-Ichi Maeda for stimulating discussions. P.M.S is supported by PPARC and

A.T. is supported by PPARC Special Programme Grant “Classical Lattice Field Theory”.

We gratefully acknowledge the use of the UK National Cosmology Supercomputer, Cosmos,

funded by PPARC, HEFCE and Silicon Graphics.

References

[1] R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13 (1976) 3398.

[2] R. Jackiw and P. Rossi, Zero modes of the vortex-fermion system, Nucl. Phys. B 190 (1981)

681.

[3] A.J. Niemi and G.W. Semenoff, Fermion number fractionization in quantum field theory,

Phys. Rept. 135 (1986) 99.

[4] S. Randjbar-Daemi and M.E. Shaposhnikov, Fermion zero-modes on brane-worlds, Phys.

Lett. B 492 (2000) 361 [hep-th/0008079].

[5] O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with

scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134].

[6] G. Gibbons, K.-i. Maeda and Y.-I. Takamizu, Fermions on colliding branes, Phys. Lett. B

647 (2007) 1 [hep-th/0610286].

[7] Y.-i. Takamizu and K.-i. Maeda, Collision of domain walls and reheating of the brane

universe, Phys. Rev. D 70 (2004) 123514 [hep-th/0406235].

[8] Y.-I. Takamizu and K.-i. Maeda, Collision of domain walls in asymptotically Anti de Sitter

spacetime, Phys. Rev. D 73 (2006) 103508 [hep-th/0603076].

[9] Y.-I. Takamizu, H. Kudoh and K.-i. Maeda, Dynamics of colliding branes and black brane

production, Phys. Rev. D 75 (2007) 061304 [gr-qc/0702138].
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